搜索
查看: 4395|回复: 6

加速度和固有频率

[复制链接]
  • 打卡等级:偶尔看看
  • 打卡总天数:101
  • 打卡总奖励:315
发表于 2018-5-30 06:15:29 | 显示全部楼层 |阅读模式
本帖最后由 PEN 于 2018-5-31 02:51 编辑

There was a question about how high the natural frequency of the actuator and load should be.   My answer was that the natural frequency at least four times greater than the frequency of acceleration. This is true when using a standard hydraulic motion control.
有一个关于执行器和负载的固有频率应该有多高的问题。 我的答案是,固有频率至少比加速频率高四倍。 使用标准液压运动控制时,这是正确的。


What is the frequency of acceleration?
加速的频率是多少?

The frequency of acceleration is the frequency at which the actuator and load accelerate. A simple example is that if the actuator and load are being moved following a sinusoid at 5 Hz, the frequency of acceleration is 5 Hz.  If the actuator is just making a simple move from one position to another, the frequency of acceleration is 0.5 seconds / acceleration time. The same can be done for the deceleration time. This assumes the acceleration ramps are sine waves where there is one fundamental frequency with no harmonics. Linear ramps have the fundamental frequency and many harmonics that may cause problems. Most motion controllers express the acceleration as mm/s^2. For instance 2500 mm/s^2 is about one forth the acceleration due to gravity. The acceleration time to 250 mm/s takes 0.1 second at 2500 mm/s^2, so the frequency of acceleration is 5 Hz. If the acceleration is to 100 mm/s the acceleration time is 0.04s so the frequency of acceleration is 12.5 Hz.

加速频率是执行器和负载加速的频率。 一个简单的例子是,如果执行器和负载在5Hz的正弦波下移动,则加速度的频率为5Hz。 如果执行器只是简单地从一个位置移动到另一个位置,则频率加速度为0.5秒/加速时间。 减速时间也可以做同样的事情。 这假设加速斜坡是没有谐波的一个基本频率的正弦波。 线性斜坡具有可能导致问题的基频和许多谐波。 大多数运动控制器将加速度表示为mm / s ^ 2。 例如2500mm / s ^ 2大约是由重力引起的加速度的四分之一。 250mm / s的加速时间在2500mm / s ^ 2时需要0.1秒,因此加速度的频率为5Hz。 如果加速度为100毫米/秒,则加速时间为0.04秒,因此加速度的频率为12.5赫兹。

I have been asked many times why the closed loop gains for short distance moves need to be different from the closed loop gains for long distance moves.  The reason is that short distance moves have very short acceleration times so the frequency of acceleration is higher.  When making short distance moves the acceleration time should not be too small.
In my example above, the 12.5 Hz frequency of acceleration may be too high.
The best option might be to slow the acceleration ramp down to 1000 mm/s^2 so the accelerationtime is still 0.1 seconds.

我多次被问及为什么短距离移动的闭环增益需要与长距离移动的闭环增益不同。 原因在于短时间移动的加速时间非常短,因此加速的频率较高。 在短时间移动时,加速时间不宜太短。
在我上面的例子中,12.5Hz的加速频率可能太高。
最好的选择可能是将加速斜坡降低到1000 mm / s ^ 2,所以加速时间仍然是0.1秒。


So why does the natural frequency need to be four times the frequency of acceleration?
那么为什么固有频率需要是加速频率的四倍呢?

The simple answer is the natural frequency does not 'need' to be four times the frequency of acceleration but it will be harder or impossible to optimize the controller gains so the actual position follows the target position with little error. If the natural frequency is much greater than the frequency of acceleration the controller gains will be much easier to optimize.

简单答案的固有频率不需要是加速频率的四倍,但是优化控制器增益将变得困难或不可能,所以实际位置跟随目标位置几乎没有错误。 如果固有频率远大于加速频率,则控制器增益将更容易优化。

I am assuming the controller is capable of PI control with velocity and acceleration feedforwards. If the controller is not capable of PI control or does not support velocity and acceleration feedforwards, the ratio of natural frequency to frequency of acceleration needs to be much higher than four if the following error is to be kept small.  For instancea controller with P only control will still have 30 degree of following erroreven if the natural frequency is 10 times greater than the frequency ofacceleration.   Do not use P only control if the following error must be close to 0.

我假设控制器能够用速度和加速度前馈进行PI控制。 如果控制器不能进行PI控制或不支持速度和加速度前馈,如果要保持较小的误差,则加速度的固有频率与频率的比率需要远高于四。 例如,即使自然频率比加速度的频率高10倍,仅有P控制的控制器仍然会有30度的跟随误差。 如果以下错误必须接近于0,则不要仅使用P来控制。

The most advanced controllers can keep the error between the target position and actual position small even if the natural frequency is only 1-2 times the frequency of acceleration.  In some cases the natural frequency can be a little less than the frequency of acceleration but I don’t recommend designing hydraulic systems with a natural frequency that low.

即使固有频率仅为加速频率的1-2倍,最先进的控制器仍可保持目标位置与实际位置之间的误差较小。 在某些情况下,固有频率可能会略低于加速频率,但我不建议设计自然频率较低的液压系统

What does this mean to you?
这对你意味着什么?


Saving money!!!!!!!!!!
节省金钱!!!

Advanced hydraulic motion controllers can control well when the ratio of the natural frequency to frequency of acceleration is less than four. Since the diameter of the hydraulic cylinder is roughly proportional to the natural frequency, the hydraulic cylinder diameter may be able to be reduced in half. How much the diameter of the hydraulic cylinder can be reduced depends on the VCCM equation.  Reducing the hydraulic cylinder diameter in half means the pump, valve, piping and accumulator size scan be reduced.  The cost savings can be much more than the total cost of the hydraulic motion controller.  Also, the machine will be much cheaper to operate.
当自然频率与加速度的比率小于4时,先进的液压运动控制器可以很好地控制。 由于液压缸的直径大致与固有频率成比例,所以液压缸直径可能减半。 液压缸的直径可以减小多少取决于VCCM方程。 将液压缸直径减半意味着,阀门,管道和蓄能器尺寸扫描要减少。 节省的成本可能远远超过液压控制器的总成本。 而且,该机器的操作成本会更低。








  • 打卡等级:常驻居民
  • 打卡总天数:349
  • 打卡总奖励:1339
发表于 2018-5-30 16:47:28 | 显示全部楼层
好,这中分享不错,还可以提高英语阅读
回复 支持 1 反对 0

使用道具 举报

  • 打卡等级:无名新人
  • 打卡总天数:2
  • 打卡总奖励:3
发表于 2018-5-30 22:22:04 | 显示全部楼层
本帖最后由 蜻蜓 于 2018-5-30 22:41 编辑

加速频率是执行器和负载加速的频率。 一个简单的例子是,如果执行器和负载在5Hz的正弦波下移动,则加速度的频率为5Hz。 如果执行器只是简单地从一个位置移动到另一个位置,则频率加速度为0.5秒/加速时间。 减速时间也可以做同样的事情。 这假设加速斜坡是没有谐波的一个基本频率的正弦波。 线性斜坡具有可能导致问题的基频和许多谐波。 大多数运动控制器将加速度表示为mm / s ^ 2。 例如2500mm / s ^ 2大约是由重力引起的加速度的四分之一。 250mm / s的加速时间在2500mm / s ^ 2时需要0.1秒,因此加速度的频率为5Hz。 如果加速度为100毫米/秒,则加速时间为0.04秒,因此加速度的频率为12.5赫兹。

加速度频率=0.5秒/加速时间
加速度频率=0.5/0.1=5HZ
加速度频率=0.5/0.04=12.5HZ

请教:
0.5秒是怎么得出的?
“如果执行器和负载在5Hz的正弦波下移动,则加速度的频率为5Hz。”不理解这句话。
5hz是1秒时间变化5个周期,一个正弦波周期内加速度不是变化4次吗?5hz正弦波,加速度不是变化20次?为什么加速度频率不是20hz,而是5hz,
我这个不理解。
回复 支持 反对

使用道具 举报

  • 打卡等级:偶尔看看
  • 打卡总天数:101
  • 打卡总奖励:315
 楼主| 发表于 2018-5-31 02:53:35 | 显示全部楼层
lygbeyondgod 发表于 2018-5-30 16:47
好,这中分享不错,还可以提高英语阅读

谢谢。 我想我修复了所有空间不足的地方。 出于某种原因,复制和粘贴并未复制所有空格。
回复 支持 反对

使用道具 举报

  • 打卡等级:偶尔看看
  • 打卡总天数:101
  • 打卡总奖励:315
 楼主| 发表于 2018-5-31 05:15:42 | 显示全部楼层
本帖最后由 PEN 于 2018-5-31 05:16 编辑

计算加速度频率的另一种方法是
1 /(加速时间+减速时间)
通常加速时间和减速时间是相等的,如果它们不是那么通常加速时间比减速时间短。
计算加速度频率的简单方法就是0.5 /加速时间。

如果运动使用正弦函数,则加速度的频率仅仅是正弦波的频率。

当使用PI控制器和前馈控制器时,固有频率应比加速频率高大约4倍。

在这个例子中,自然频率是10Hz。 加速度的频率是2.5,因为正弦波是2.5赫兹。 实际位置紧随目标位置,但并不完美。
PIFF.png
回复 支持 反对

使用道具 举报

  • 打卡等级:偶尔看看
  • 打卡总天数:101
  • 打卡总奖励:315
 楼主| 发表于 2018-5-31 05:27:46 | 显示全部楼层
当使用高级控制算法时,可以选择。
1加速的频率可以更高,并且仍然可以很好地控制。
2.可以减少气缸的直径,节省资金,但保持加速的频率相同。

下面的例子显示固有频率与上面的例子相同,为10Hz。 加速的频率也是10赫兹。 这是在推动极限,但采用更好控制算法的10 Hz控制仍然比上述PI控制更好。 比较RMSE(均方根误差)。
Advanced Control Algorithm.png
回复 支持 反对

使用道具 举报

  • 打卡等级:偶尔看看
  • 打卡总天数:101
  • 打卡总奖励:315
 楼主| 发表于 2018-5-31 05:40:52 | 显示全部楼层
本帖最后由 PEN 于 2018-5-31 05:43 编辑

现在比较只有比例控制。 模型参数仍然相同。 正弦波的频率为2.5Hz,就像前馈示例中的PI一样。 注意这个控件很糟糕。 与正弦波相比,以下误差较大。 比较RMSE。 正弦波的频率必须减慢,否则液压缸直径会变得更大,如果要减小以下误差。

现在还有两个选择。
1.减慢正弦波。 ( 表现不佳 )
2.花更大的气瓶和泵。

这基本上是游勇在另一个话题中所说的。
P pos error.png
P.png
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则